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Tapered beams are more efficient compared to uniform beams as they provide a better distribution of mass 
and strength and also meet special functional requirements in many engineering applications. In this paper, the 
linear and non-linear fundamental frequency parameter values of the tapered Timoshenko beams are evaluated by 
using the coupled displacement field (CDF) method and closed form expressions are derived in terms of 
frequency ratio as a function of slenderness ratio, taper ratio and maximum amplitude ratio for hinged-hinged and 
clamped-clamped beam boundary conditions. The effectiveness of the CDF method is brought out through the 
solution of the large amplitude free vibrations, in terms of fundamental frequency of tapered Timoshenko beams 
with axially immovable ends. The results obtained by the present CDF method are validated with the existing 
literature wherever possible. 
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1. Introduction 
 
 Research on vibrations of beams has been going on for a long period of time. So far, many authors 
have found different methods to find the free vibration behavior of shear flexible beams. Abrate [1] analyzed 
the free vibration of non-uniform beams with general shape and arbitrary boundary conditions. Byoung Koo 
Lee et al. [2] studied free vibrations of tapered beams with general boundary condition which involves finding 
an ordinary differential governing equation of beams which can be solved by numerical methods and the 
natural frequencies are calculated by combining the Runge Kutta method and the determinant search method. 
De Rosa et al. [3] considered the dynamic behavior of beams with an linearly varying cross-section in which 
the equation of motion is solved in terms of Bessel functions, and the boundary conditions lead to the frequency 
equation which is a function of four flexibility coefficients. De Rosa et al. [4] calculated the natural vibration 
frequencies of tapered beams by using the Euler-Bernoulli beam theory in the presence of an arbitrary number 
of rotationally, axially and elastically flexible constraints and the dynamic analysis is performed by means of 
the so-called cell discretization method (CDM), according to which the beam is reduced to a set of rigid bars, 
linked together by elastic sections, where the bending stiffness and the distributed mass of the bars is 
concentrated. Clementi et al. [5] studied the frequency response curves of a non-uniform beam undergoing 
nonlinear oscillations by using the multiple time scale method in which the axial inertia is neglected, and so the 
equations of motion are statically condensed on the transversal displacement only. 
        Firouz-Abadi et al. [6] investigated the transverse free vibration of a class of variable-cross-section 
beams using the Wentzel, Kramers, Brillouin (WKB) approximation in which the governing equation of 
motion of the Euler–Bernoulli beam including axial force distribution is utilized to obtain a singular 
differential equation in terms of the natural frequency of vibration and a WKB expansion series is applied to 
find the solution. Zamorska [7] used Green’s function method for the free vibration problem of non uniform 
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Bernoulli-Euler beams to find Green’s function of the fourth order differential operator, occurring at the 
beam’s equation of motion and proposed the power series method. Jung Woo Lee [8] developed the transfer-
matrix method to determine solutions to the free vibration characteristics of a tapered Bernoulli–Euler beam 
in which the roots of the differential equation are determined by using the Frobenius method to obtain the 
power series solution for bending vibrations and examined the effect of various taper ratios on the eigen pairs 
of beams, in which the height of the cross section along the length is linearly reduced.   
 Raju et al. [9] analyzed large amplitude free vibrations of tapered beams using continuum and finite 
element methods. Mahmoud et al. [10] applied the differential transformation method (DTM) for free 
vibration analysis of beams with uniform and non-uniform cross sections. Meera Saheb et al. [11] conducted 
a free vibration analysis for uniform Timoshenko beams using the coupled displacement field method. 
Mehmet Cem Ece et al. [12] studied the vibrations of an isotropic beam which has a variable cross-section. 
In [12], the governing equation is reduced to an ordinary differential equation in the spatial coordinate 
system for a family of cross-section geometries with exponentially varying width. Minmao Liao and 
Hongzhi Zhong [13] carried out a non-linear vibration analysis by establishing equations of motion for taper 
Timoshenko beams. Mahmoud Bayat [14] introduced an analytical study on the vibration frequencies of 
tapered beams using an ancient Chinese method called the Max-Min Approach (MMA) and Homotopy 
Perturbation Method (HPM) to obtain natural frequency and corresponding displacement of tapered beams. 
Mohamed Hussien Taha and Samir Abohadima [15] used a mathematical model for vibrations of non-
uniform flexural beams by presenting a mathematical model for free vibrations of non-uniform viscoelastic 
flexural beams. An analytical solution for the fourth order differential equation of beam vibration under 
appropriate boundary conditions is obtained by factorization and calculated mode shapes and damped natural 
frequencies for a wide range of beam characteristics. Lewandowski [16] obtained an equation of motion to 
study non-linear vibrations of beams by employing Hamilton’s principle by neglecting inertia forces and 
applied the Ritz method with continuum solution for determining natural frequencies. 
  Ramazan et al. [17] presented a free vibration analysis of a beam based on the Timoshenko type with 
different boundary conditions. The solutions are obtained by the method of Lagrange multipliers in which 
the free vibration problem is posed as a constrained vibration problem. Rossi and Laura [18] determined the 
natural vibration frequencies of linearly tapered beams subjected to different combinations of edge supports 
by finite element algorithmic procedures. Si Yuan et al. [19] utilized the exact dynamic stiffness method for 
studying vibration of Bernoulli–Euler members, for the case of flexural free vibration of non-uniform 
Timoshenko beams with no uniformity of geometric and material properties. Kukla and Zamojska [20] 
applied Green’s function method in the frequency analysis of a beam with a varying cross section. The beam 
carries an arbitrary number of attached discrete systems. The exact solution to the problem concerns a beam 
with quadratically a varying cross-section area. Hoseini et al [21] used the homotopy analysis method to 
obtain an accurate analytical solution for fundamental non-linear natural frequency and corresponding 
displacement of tapered beams. Zhou and Cheung [22] studied the vibration characteristics of tapered beams 
with a continuously varying rectangular cross-section for a truncated beam and arbitrary positive numbers 
for a sharp ended beam and obtained the eigen frequency equation by the Rayleigh-Ritz method and the 
effect of the location convergence is discussed.  
 The solution for the large amplitude free vibration problems using energy methods involves 
assuming suitable admissible functions for lateral displacement and the total rotation which leads to two 
coupled nonlinear differential equations in terms of lateral displacement and the total rotation. This can be 
achieved with less computational effort by the coupled displacement field method in which lateral 
displacement and total rotation are coupled through the static equilibrium equation of the shear flexible 
beam. This method leads to only one undetermined coefficient which can be easily solved using the principle 
of conservation of total energy (neglecting damping) to solve the problem.   
 

2. Methodology 
 

2.1. Rayleigh-Ritz method 
 

 In the Rayleigh-Ritz method the expressions for strain energy and kinetic energy are  
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where E is Young’s modulus and I is the area moment of inertia, w is the lateral displacement, θ is the total 
rotation, k is the shear correction factor, G is the shear modulus, A is the  area of cross section, ρ is the mass 
density of the material of the beam,   is the radiant frequency, L is the length of the beam and x is the axial 
coordinate. Suitable admissible functions satisfying mainly the kinetic boundary conditions (sometimes the 
admissible functions may satisfy some or all the natural boundary conditions and do not violate the variation 
principles) are assumed for w and θ as 
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 We consider the equivalence of θ and 
dw

dx
 of the beam problem where ia  and ib  are the 2nd 

undetermined coefficients for the multi-term admissible functions given by the above equations. For the sake 
of simplicity and clarity, single term admissible functions for θ and w with two undetermined coefficients are 
chosen and it has been shown that the single term admissible functions with trigonometric functions for 
various boundary conditions of the beam are found to be accurate for all practical purposes. The Lagrangian 
(U-T) is minimized with respect to the two undetermined coefficients a  and b  as 
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 By solving the above equations, a quadratic equation for the frequency parameter can be obtained in 

the form of 2L M N 0      which has roots of 
2M M 4LN

2L

  
 and by solving the above equation 

the fundamental frequency parameter can be obtained as 
2 4

LA L

EI

 
   and can be solved to obtain the 

fundamental frequency parameter of Timoshenko beams for various boundary conditions as a function of the 
slenderness ratio (β=L/r) and taper ratio, where r is the radius of gyration. 
 The Rayleigh-Ritz (R-R) method is explained in detail as follows for a tapered Timoshenko hinged-
hinged beam boundary condition. The equation for strain energy and kinetic energy for a tapered 
Timoshenko beam are given as 
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where hL, ho , are the height of the beam at the left end=0 and the right end =L respectively as given in Fig.1, 
Ao and Io are cross sectional area and area moment of inertia at the right side, A is the area at any cross 
section, I is the moment of inertia at any cross section,  is the taper ratio. The assumed total rotation and 
transverse displacement for hinged-hinged beam are respectively                                                                                            
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 Substituting Eqs (2.9), (2.10) and (2.11) in Eq.(2.7) and after simplification, we get 
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Substituting Eqs (2.9),(2.10) and (2.11) in Eq.(2.8) and after simplification, we obtain 
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 Applying the Lagrangian and minimizing with respect to a  and after simplification the equation 
becomes as 
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 Applying the Lagrangian and minimizing with respect to b ' 'b  and after simplification the equation 
becomes 
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 Solving Eqs (2.15) and (2.17) and after simplification the final equation gets the following form 
 

  2L M N 0     ,                                                                            (2.18)                     
 

which has roots of 
2M M 4LN

2L

  
                                                                                       

where 

  
.

6

6 76
L





,      

. . .
4 4 2

21 3841 66 71834 2 1666
M

 
    

   
,      

.
2

210 970
N  


, 

 

. . . . . . .

.

2

4 4 2 4 4 2 8

6

21 3841 66 71834 2 1666 21 3841 66 71834 2 1666 5706 6297

13 52

   
            

          




 (2.19) 

where   
. . . .

. .

3 20 5 0 0871 0 4241 0 75

0 5 0 25

      
      

. . . .

. .

3 20 5 0 1629 0 5759 0 75

0 5 0 25

      
      

. 

 

            

Fig.1. Tapered Timoshenko hinged-hinged beam with linearly varying height (constant width). 
 
2.2. Coupled displacement filed method 
 
 Figure1 Tapered Timoshenko hinged-hinged beam with linearly varying height (constant width). 
 
2.2.1. Coupling equation 
 
 From the kinematics of the shear flexible beam theory  
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where u  is the axial displacement and w  is the transverse displacements at any point of the beam, z is the 
distance of any point from the neutral axis, w is the transverse displacement and  is the total rotation 
anywhere on the beam axis and x, z are the independent spatial variables. The axial and shear strains are 
given by  
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 Now, the expressions for the strain energy U and the work done W  by the externally applied load are 
given by  
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where EI is the flexural rigidity, GA is the shear rigidity, k is the shear correction factor (taken as 5/6 in the 
present study), p(x) is the static lateral load per unit length acting on the beam, E is Young’s modulus, G is 
the shear modulus, x is the axial coordinate and L is the length of the beam. Applying the principle of 
minimization of total potential energy, as  
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the following equilibrium equations can be obtained  
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where θ is the total rotation, w is the transverse displacement. Equations (2.27) and (2.28) are coupled 
equations and can be solved for obtaining the solution for the static analysis of the shear deformable beams. 
      A close observation of Eq.(2.27) shows that it is dependent on the load term ‘p’ and Eq.(2.28) is 
independent of the load term ‘p’. Hence, Eq.(2.28) is used to couple the total rotation  and the transverse 
displacement w , so that the two undetermined coefficients problem (for single term admissible function) 
becomes a single undetermined coefficient problem and the resulting linear free vibration problem becomes 
much simpler to solve. 



Large amplitude free vibration analysis of tapered Timoshenko … 679 

2.3.  Evaluation of fundamental frequency parameter using coupled displacement field (CDF) 
method 

 
 The concept of the coupled displacement field method is explained in detail in the following section. 
In the CDF method, the single term admissible function for the total rotation ( )  is assumed and the function 

for the transverse displacement ( )w  is derived using the coupling equation. An admissible function for the 

total rotation ( )  is assumed for the tapered hinged-hinged beam which satisfies all the applicable boundary 
conditions and the symmetric condition in the beam domain. 
 

  cos
x

a
L L

 
  ,                                                                                                   (2.29) 

  

  sin
2

d x
a

dx L L

      
 

,                                                                                         (2.30)                     

  

  cos
2 3

2 3

d x
a

Ldx L

  
                                                                                          (2.31)                     

 
where is the central lateral displacement of the beam which is also the maximum lateral displacement. 
Rewriting Eq.(2.28), we get 
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 Substituting Eqs (2.29), (2.31) in Eq.(2.32) and by integrating the above equation, lateral 
displacement can be obtained as 
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 It may be noted here that because of the coupled displacement field concept, the transverse 
displacement w  distribution contains the same undetermined coefficient a  as the   distribution and 
satisfies all the applicable essential boundary and symmetric conditions. 
 

  
/

( ) ( )
x L 2
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w 0 w L 0

dx 
   .                                                                 (2.34)                     

 
 Linear free vibrations of tapered Timoshenko beams can be studied, once the coupled displacement 
field for the lateral displacement w , for an assumed   distribution, is evaluated using the principle of 
conservation of total energy at any instant of time, neglecting damping, which states that U T  constant. 
The expression for U and T are already given in Eqs (2.7) and (2.8).                                                         
 Substituting Eqs (2.9), (2.29), (2.30) and (2.32) in Eqs (2.7) and after simplification, we get 
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Substituting Eqs (2.9), (2.29) and (2.33) in Eq.(2.8) and after simplification, we obtain 
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by applying the Lagrangian, for Eqs (2.35), (2.36) the fundamental frequency parameter is obtained and is 
given as below 
 

  

   

   

. . . . . . .

. . . . . . .

2
4 3 2

22 4
L

22 2
3 2

2 2

0 5 0 0871 0 4241 0 75 3 12 0 5 0 25
A L

EI
1 3 12 0 5 0 25 0 5 0 1629 0 5759 0 75

 
          

     
                   

                          

  

Where   is the non dimensional fundamental frequency parameter, β=L/r (slenderness ratio) and r is the 
radius of gyration. The same procedure is adopted as discussed in the above section for calculating the 
fundamental frequency parameter for clamped-clamped tapered Timoshenko beam boundary condition 
(Tab.1). 
 
3. Large amplitude free vibrations 
 
 For an assumed   distribution, the coupled displacement field for the lateral displacement w  is 
evaluated, after the lateral displacement w  is calculated, the large amplitude free vibrations can be studied 
using the principle of conservation of total energy at any instant of time neglecting damping. 
 
  U+T+W=constant.                                                                               (3.1)                     
 
 Work done due to large amplitudes  
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where  w  is the transverse displacement obtained from the coupling equation 
                                                                                                     

    
L 2

a 2
0

E dw
T I dx

dx2Lr

   
  .                                                       (3.3)                     

 

 It is to be noted here that w  in Eq.(3.3) does not contain shear flexible terms.                                                            

aT  is the tension developed in the beam because of large deformations. 
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 W is the work done by the tension developed because of large amplitudes, ρ is the mass density. 
Where r is the radius of gyration and aT  is evaluated in terms of the amplitude ratio (a/r). Substituting the 
values of w  (obtained from the coupled displacement field), i.e., Eq.(2.33) in Eq.(3.2) and solving the work 
done due to large amplitudes, we get 
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 Substituting Eqs (2.35), (2.36) and (3.6) in Eq.(3.1) and simplifying. 
The following form is obtained 
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       (3.7)                      

 
 The ratio of non linear and linear frequency is expressed as  
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,                                                           (3.8)                     
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. (3.9)                     

 
 The same procedure is adopted as in the above section for calculating the frequency ratio for clamped-
clamped tapered Timoshenko beam boundary condition; respective important expressions are given in Tab.1. 
 
4. Numerical results and discussion 
 
 In all computations, Poisson’s ratio (ν) and shear correction factor (k) are taken as 0.3 and 5/6 
respectively. The concept of the coupled displacement field is used to determine the ratios of non-linear 
radian frequency NL  to the linear radian frequency L  of tapered Timoshenko beams with the two most 
practically used hinged-hinged, clamped-clamped beam boundary conditions. The boundary conditions of 
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the beam considered here are hinged-hinged, clamped-clamped with axially immovable ends. Suitable single 
term trigonometric admissible functions are used to represent the total rotation θ in the coupled displacement 
field method. The corresponding coupled lateral displacement w is derived using the coupling equation. The 

numerical results are obtained in terms of NL

L

 
  

 for various maximum amplitudes, taper parameters and 

slenderness ratios. To assess the accuracy of the results, the present results obtained from the coupled 
displacement field method  are compared with the existing literature.   
         Table 1 shows the expressions for the total rotation (θ), derived transverse displacement (w), fundamental 

frequency parameter ( ) and frequency ratio NL

L

 
  

 for a clamped-clamped tapered Timoshenko beam. Tables 

2 and 3 shows the variation of linear non-dimensional fundamental frequency parameter as a function of the 
slenderness ratio and taper ratio for hinged-hinged, clamped-clamped beam boundary conditions. To show the 
effectiveness of the CDF method, the author also solved the tapered Timoshenko hinged-hinged beam boundary 
condition problem using the famous conventional Rayleigh-Ritz method and the same results are also included in 
Tab.3 along with the results of other researchers wherever possible. It is observed from Tab.2 and Tab.3 that the 
non dimensional linear fundamental frequency parameter value increases with an increase in the taper ratio for a 
given slenderness ratio. It is also found from Tab.2 and Tab.3 that the non dimensional linear fundamental 
frequency parameter value increases with an increase in the slenderness ratio for a given taper parameter. It is in 
general observed from Tab.2 and Tab.3 that more frequency values are observed in the case of clamped-clamped 
beam when compared to the hinged-hinged beam.  
 

Table.1.  Expressions for total rotation ( ) , derived transverse displacement (w) fundamental frequency 

parameter ( ) and frequency ratio 
2

NL

L

 
  

 for clamped-clamped tapered Timoshenko beams. 
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Table 2. 1 2  values for a tapered Timoshenko hinged-hinged beam. 
 

 
Slenderness ratio (β) 

                        10 20 23.0951 40                            100 
Taper 

ratio 
() 

CDF 
Method 

R-R 
method 

Ref[18] 
CDF 

Method 
R-R 

method 
Ref [18] 

CDF 
Method 

CDF 
Method 

R-R 
Method 

CDF 
Method 

R-R 
Method 

Ref[18] 

0 8.3912  8.6913 8.388 9.4107 9.8398   9.411 

9.5180 
9.5163^ 
9.5163$ 9.7470 10.2259 9.8496 10.3445 9.850 

0.15 8.8435 8.8404 - 10.0595 10.0547       - 9.96419 10.4695 10.4676 10.5953 10.5950 - 
0.1 8.6916 8.9874 8.683 9.8415 9.2696 9.829 10.1899 10.2267 10.7107 10.3446 10.8473 - 
0.2 8.9962 9.1322 8.955 10.2789 10.4843 10.228 10.4171 10.7141 10.9549 10.8480 11.1014 - 

0.25 9.1496 9.2747 - 10.4996 10.6987       - 10.6458 10.9604 11.2002 11.1024 11.3570 - 
0.3 9.3036 9.4148 9.205 10.7214 10.9125 10.610 10.8757 11.2082 11.4463 11.3585 11.6141 - 

0.35 9.4580 9.5526 - 10.9443 11.1257 - 11.1068 11.4574 11.6933 11.6161 11.8726 - 
0.4 9.6127 9.6880 - 11.1681 11.3382 - 11.3389 11.7079 11.9409 11.8752 12.1323 - 

0.45 9.7676 9.8209 - 11.3926 11.5498 - 11.5718 11.9596 12.1891 12.1356 12.3932 - 
0.5 9.9225 9.9514 - 11.6178 11.7604 - 11.8055 12.2124 12.4378 12.3973 12.6551 - 

0.55 10.0774 10.0795 - 11.8435 11.9700 - 12.0400 12.4661 12.6869 12.6601 12.9181 - 
0.6 10.2321 10.2051 - 12.0697 12.1785 - 12.2749 12.7208 12.9362 12.9241 13.1820 - 

0.65 10.3866 10.3283 - 12.2962 12.3857 - 12.5104 12.9764 13.1858 13.1891 13.4468 - 
0.7 10.5407 10.4491 - 12.5230 12.5917 - 12.7463 13.2327 13.4355 13.4551 13.7123 - 

0.75 10.6943 10.5675 - 12.7500 12.7963 - 12.9825 13.4897 13.6853 13.7219 13.9787 - 
0.8 10.8475 10.6835 - 12.9771 12.9995 - 13.2190 13.7474 13.9351 13.9897 14.2457 - 

0.85 11.0000 10.7971 - 13.2042 13.2013 - 13.4557 14.0057 14.1848 14.2582 14.5133 - 
0.9 11.1519 10.9084 - 13.4313 13.4016 - 13.6924 14.2644 14.4345 14.5274 14.7816 - 

0.95 11.3030 11.0175 - 13.6583 13.6003 - 13.9293 14.5237 14.6840 14.7974 15.0504 - 
1 11.4533 11.3873 - 13.8852 13.4105 - 14.1661 14.7834 14.7470 15.0681 15.8495 - 
 

Table 3. 1 2  values for a tapered Timoshenko clamped-clamped beam. 
 

Taper Ratio 
  () 

Slenderness ratio(β) 
10 20 40 80 100 

CDF 
Method    Ref[18] 

CDF 
Method Ref[18] 

CDF    
method 

CDF     
method 

CDF 
Method Ref[18] 

0 13.8025 13.8370 18.0930 18.838 21.8857 22.5543 22.6392 22.61 
0.1 14.0619 14.0910 18.7304 19.487 22.8503 23.6136 23.7109 - 
0.15 14.2010 - 19.0651 - 23.3531 24.1647 24.2683 - 
0.2 14.3459 14.3180 19.4092 20.095 23.8682 24.7287 24.8387 - 
0.25 14.4964 - 19.7623 - 24.3947 25.3046 25.4210 - 
0.3 14.6522 14.5210 20.1240 20.667 24.9316 25.8914 26.0144 - 
0.35 14.8130 - 20.4928 - 25.4783 26.4884 26.6180 - 
0.4 14.9785 - 20.8690 - 26.0340 27.0948 27.2310 - 
0.45 15.1484 - 21.2519 - 26.5980 27.7099 27.8528 - 
0.5 15.3226 - 21.6408 - 27.1696 28.3331 28.4827 - 
0.55 15.5008 - 22.0355 - 27.7484 28.9638 29.1202 - 
0.6 15.6828 - 22.4354 - 28.3338 29.6014 29.7646 - 
0.65 15.8683 - 22.8401 - 28.9252 30.2454 30.4156 - 
0.7 16.0572 - 23.2493 - 29.5223 30.8955 31.0726 - 
0.75 16.2492 - 23.6626 - 30.1246 31.5511 31.7352 - 
0.8 16.4441 - 24.0797 - 30.7317 32.2119 32.4030 - 
0.85 16.6418 - 24.5002 - 31.3433 32.8776 33.0758 - 
0.9 16.8421 - 24.9240 - 31.9591 33.5477 33.7531 - 
0.95 17.0448 - 25.3560 - 32.5786 34.2220 34.4346 - 
1 17.2498 - 25.7799 - 33.2017 34.9003 35.1201 - 
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          In Tabs 4, 5, 6 and 7 the variation of the frequency ratio NL

L

 
  

 with the maximum amplitude ratio 

and taper parameters for different slenderness ratios such as 20 (short beams) and 100 (slender beams). They 
are given respectively for hinged-hinged, clamped-clamped tapered beam boundary conditions. It is found 
from Tab.4 and Tab.5 that the frequency ratio is a function of three parameters such as the maximum 
amplitude ratio, taper parameter and slenderness ratio. It is in general found from Tab.4 and Tab.5 that the 
frequency ratio increases with an increase of the maximum amplitude ratio for a given taper parameter and 
slenderness ratio. It is also seen in Tab.4 and Tab.5 that the frequency ratio decreases with an increase of the 
taper parameter for a given slenderness ratio and amplitude ratio. This is mainly due to the fact that as the 
taper parameter increases the mass of the beam decreases. A similar frequency ratio variation has been 
observed for clamped-clamped beam boundary conditions for the slenderness ratio of 20 and 100 and are 
included in Tab.6 and Tab.7 
 

Table 4. NL

L




 for a tapered shear flexible hinged-hinged beam for β=20. 

 
    
      
am/r 

             = 0.25                =  0.5               = 0.75                =  1 
CDF 

Method 
 

Ref [13] 
CDF 

Method 
 

Ref [13] 
CDF 

Method 
 

Ref [13] 
CDF 

Method 
 

Ref [13] 
0.10 1.0009 1.0009 1.0005 1.0007 1.0003 1.0006 1.0002 1.0005 
0.20 1.0036 1.0037 1.0019 1.0030 1.0011 1.0025 1.0007 1.0021 
0.30 1.0081 - 1.0042 - 1.0025 - 1.0016 - 
0.40 1.0144 1.0146 1.0075 1.0119 1.0044 1.0100 1.0028 1.0085 
0.50 1.0224 - 1.0118 - 1.0069 - 1.0044 - 
0.60 1.0321 1.0325 1.0169 1.0266 1.0099 1.0224 1.0064 1.0190 
0.70 1.0434 - 1.0230 - 1.0134 - 1.0087 - 
0.80 1.0564 1.0570 1.0299 1.0467 1.0175 1.0394 1.0113 1.0336 
0.90 1.0709 - 1.0377 - 1.0221 - 1.0143 - 
1.00 1.0868 1.0878 1.0464 1.0721 1.0272 1.0608 1.0177 1.0519 
1.10 1.1042 - 1.0559 - 1.0328 - 1.0213 - 
1.20 1.1230 1.1239 1.0662 1.1022 1.0389 1.0864 1.0253 1.0740 
1.30 1.1430 - 1.0773 - 1.0455 - 1.0297 - 
1.40 1.1642 - 1.0891 - 1.0526 - 1.0343 - 
1.50 1.1865 1.1878 1.1017 1.1552 1.0602 1.1315 1.0393 1.1131 
2 1.3135  1.1748  1.1047  1.0689  
3 1.6224  1.3622  1.2231  1.1492  
4 1.9752  1.5878  1.3718  1.2531  
5 2.3523  1.8376  1.5420  1.3751  
 
 
 
 
 
 
 
 
 



Large amplitude free vibration analysis of tapered Timoshenko … 685 

Table 5. NL

L




 for a tapered shear flexible hinged-hinged beam for β=100. 

 

  
     
      
am/r 

0.25 0.4 0.5 0.75 1 
   CDF 
Method 

            
Ref[13] 

   CDF 
Method 

            
Ref[9] 

CDF 
Method 

            
Ref[13] 

CDF 
Method 

            
Ref[13] 

CDF 
Method 

           
Ref[13] 

0.10 1.0008 1.0010 1.0010 1.0010 1.0004 1.0008 1.0003 1.0007 1.0002 1.0006 
0.20 1.0033 1.0040 1.0022 1.0042 1.0017 1.0033 1.0010 1.0028 1.0006 1.0025 
0.30 1.0075 - 1.0050 - 1.0039 - 1.0022 - 1.0014 - 
0.40 1.0132 1.0158 1.0088 1.0166 1.0069 1.0132 1.0040 1.0113 1.0025 1.0098 
0.50 1.0206 - 1.0138 - 1.0107 - 1.0062 - 1.0040 - 
0.60 1.0295 1.0353 1.0198 1.0370 1.0154 1.0294 1.0089 1.0252 1.0057 1.0219 
0.70 1.0400 - 1.0268 - 1.0209 - 1.0121 - 1.0078 - 
0.80 1.0519 1.0619 1.0349 1.0649 1.0272 1.0516 1.0158 1.0444 1.0102 1.0387 
0.90 1.0653 - 1.0440 - 1.0344 - 1.0199 - 1.0128 - 
1.00 1.0800 1.0950 1.0541 1.0997 1.0423 1.0795 1.0245 1.0685 1.0158 1.0597 
1.10 1.0961 - 1.0651 - 1.0509 - 1.0296 - 1.0191 - 
1.20 1.1134 1.1344 1.0770 - 1.0603 1.1127 1.0351 1.0972 1.0227 1.0849 
1.30 1.1319 - 1.0898 - 1.0704 - 1.0411 - 1.0266 - 
1.40 1.1516 - 1.1035 - 1.0813 - 1.0475 - 1.0308 - 
1.50 1.1724 1.2033 1.1180 - 1.0928 1.1712 1.0543 1.1479 1.0352 1.1296 

2 1.2906  1.2017 1.3354 1.1598  1.0948  1.0619  
3 1.5805  1.4140 1.6981 1.3330  1.2027  1.1344  
4 1.9138  1.6663 - 1.5430  1.3394  1.2289  
5 2.2717  1.9432 - 1.7769  1.4968  1.3406  

 

Table 6. NL

L




 for a tapered shear flexible clamped-clamped beam for β=20. 

 
 

  
     
      am/r 

               0.25              0.5               0.75                1 
CDF 

Method 
 

Ref 13] 
CDF 

Method 
 

Ref[13] 
CDF 

Method 
 

Ref 13] 
CDF 

Method 
 

Ref[13] 
0.10 1.0002 1.0002 1.0001 1.0001 1.0000 1.0001 1.0000 1.0001 
0.20 1.0006 1.0006 1.0003 1.0005 1.0002 1.0004 1.0001 1.0003 
0.30 1.0016 - 1.0008 - 1.0004 - 1.0002 - 
0.40 1.0028 1.0025 1.0014 1.0019 1.0007 1.0015 1.0004 1.0012 
0.50 1.0043 - 1.0022 - 1.0011 - 1.0006 - 
0.60 1.0062 1.0057 1.0031 1.0043 1.0016 1.0034 1.0009 1.0026 
0.70 1.0084 - 1.0043 - 1.0023 - 1.0012 - 
0.80 1.0110 1.0100 1.0056 1.0076 1.0029 1.0060 1.0015 1.0047 
0.90 1.0139 - 1.0070 - 1.0036 - 1.0019 - 
1.00 1.0172 1.0156 1.0087 1.0119 1.0045 1.0093 1.0024 1.0073 
1.10 1.0207 - 1.0105 - 1.0054 - 1.0029 - 
1.20 1.0246 1.0223 1.0125 1.0170 1.0065 1.0133 1.0034 1.0105 
1.30 1.0288 - 1.0146 - 1.0076 - 1.0040 - 
1.40 1.0334 - 1.0169 - 1.0088 - 1.0047 - 
1.50 1.0382 1.0344 1.0194 1.0263 1.0100 1.0206 1.0054 1.0164 

2 1.0670  1.0343  1.0178  1.0095  
3 1.1452  1.0756  1.0397  1.0213  
4 1.2464  1.1308  1.0694  1.0376  
5 1.3657  1.1982  1.1066  1.0582  
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Table 7. NL

L




 for a tapered shear flexible clamped-clamped beam for β=100. 

 
                                                                             
     
      
am/r 

               0.25 0.4               0.5               0.75               1 
   CDF 
Method  

Ref 
[13] 

   CDF 
Method  

Ref [9] CDF 
Method

Ref[13] CDF  
Method

Ref[13] CDF 
Method 

Ref[13]

0.10 1.0001 1.0002 1.0001 1.0004 1.0001 1.0002 1.0000 1.0002 1.0000 1.0001 
0.20 1.0005 1.0009 1.0003 1.0017 1.0003 1.0008 1.0001 1.0007 1.0001 1.0006 
0.30 1.0011 - 1.0007 - 1.0006 - 1.0003 - 1.0001 - 
0.40 1.0020 1.0038 1.0013 1.0066 1.0010 1.0031 1.0005 1.0027 1.0003 1.0023 
0.50 1.0032 - 1.0021 - 1.0015 - 1.0008 - 1.0004 - 
0.60 1.0046 1.0085 1.0030 1.0149 1.0022 1.0070 1.0011 1.0060 1.0006 1.0052 
0.70 1.0062 - 1.0040 - 1.0030 - 1.0015 - 1.0008 - 
0.80 1.0081 1.0150 1.0052 1.0263 1.0039 1.0124 1.0020 1.0106 1.0010 1.0092 
0.90 1.0103 - 1.0066 - 1.0050 - 1.0025 - 1.0013 - 
1.00 1.0126 1.0233 1.0082 1.0408 1.0061 1.0193 1.0030 1.0165 1.0016 1.0144 
1.10 1.0153 - 1.0099  1.0074 - 1.0037 - 1.0019 - 
1.20 1.0182 1.0334 1.0118  1.0088 1.0278 1.0044 1.0237 1.0023 1.0206 
1.30 1.0213 - 1.0138  1.0103 - 1.0052 - 1.0027 - 
1.40 1.0246 - 1.0160  1.0120 - 1.0060 - 1.0031 - 
1.50 1.0282 1.0517 1.0183  1.0138 1.0430 1.0069 1.0367 1.0036 1.0320 
2 1.0497  1.0323 1.1545 1.0243  1.0122  1.0064  
3 1.1087  1.0713 1.3224 1.0540  1.0273  1.0143  
4 1.1863  1.1237 1.0941  1.0481  1.0253  
5 1.2792  1.1876 1.1436  1.0742  1.0392  
 

5. Conclusions 
 
 The concept of the CDF method applicable to beams presented in this paper is successfully applied 
to study the large amplitude free vibration behavior of tapered Timoshenko beams with axially immovable 
ends. The influence of the taper parameter on the linear and non-linear frequency parameter has been studied 
for two different tapered Timoshenko beam boundary conditions. Accurate closed form expressions for 

2
NL

L

 
  

 for the hinged-hinged, clamped-clamped beam boundary conditions are obtained in terms of the 

maximum amplitude ratio, taper ratio and slenderness ratio for the assumed single term admissible function 
for the total rotation θ. 
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Nomenclature 
 
 A   area of cross section 
 E  Young’s modulus 



Large amplitude free vibration analysis of tapered Timoshenko … 687 

 G  shear modulus 
 HL  height of beam at right end 
 Ho  height of beam at left end 
 I  area moment of inertia 
 k  shear correction factor 
 L  length of the beam 
 r   radius of gyration 
 T   kinetic energy     
 U   strain energy 
 w  transverse displacement 
   taper ratio    
   slenderness ratio       
     assumed total rotation 
   Poisson's ratio (0.3)    
 L   linear frequency 

 NL   nonlinear frequency 
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